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1 Introduction

The currently available high performance signal processing systems manufac-
tured by Texas Instruments, including the Keystone I [I5] and Keystone II [I4]
architectures, as well as the TDA2x with Embedded Vision Engine (EVE) [13],
are heterogeneous multiprocessor architectures. These architectures currently
embed up to 12 heterogeneous cores and this number is likely to increase in the
next generations in order to cope with the ever more complex applications.

In this context, training engineers to program Digital Signal Processor (DSP)
architectures is a challenging task because the impact of application and archi-
tecture bottlenecks on system performance is high and difficult to predict. The
main challenges to overcome when designing a multicore signal processing sys-
tem are:

e to exploit enough algorithm parallelism (task, data and pipeline paral-
lelisms) to minimize latency in general,

e to choose the right core for each application subtask,

e to provide data where and when needed so as to avoid stalling cores and
underusing the hardware, hence maximizing the usage efficiency.

PREESM is an Eclipse-based framework that provides dataflow-based meth-
ods to study a multicore DSP system. The framework is open-source and pro-
vided with extensive tutorials for easy initiation of C/C++ programmers to
multicore DSP programming. PREESM provides a system designer with high
level rapid prototyping information on algorithm parallelism and latency, as
well as on system memory requirements. Moreover, a code generation is pro-
vided to transform the dataflow representation into a compilable code. Actors
are manually implemented by the system designer in the language supported
by the architecture compiler (e.g. C or C++ code for the Texas Instruments
TMS320C6678 DSP) and the executable resulting from compiling together the
generated and the manual code constitutes a multicore system prototype that
is guaranteed deadlock-free and can be retargeted to a different number of cores
within a few minutes.

Dataflow Models of Computation (MoCS) are a promising solution to the
limitation of imperative languages (C, C++...) to represent application paral-
lelism. The Parameterized and Interfaced Synchronous Dataflow (PiSDF) [5]
dataflow MoC tested within the PREESM framework Version 2 divides an appli-
cation into parallel processes called actors. These actors communicate through
data First In, First Out data queues (FIFOs) and their data production and
consumption rates on these FIFOs can be modified by parameters.

The paper is organized as follows: after a presentation of related works in
Section [2] an overview of the PREESM framework is given in Section A
focus is put on the algorithm and architecture models in Section [ and the most
important rapid prototyping task are explained in Experimental results of
the PREESM rapid prototyping process are discussed in Section[6} The chosen
use case is a stereo matching algorithm running on an 8-core TMS320C6678
DSP.



2 Related Works

OpenMP [3] is becoming the defacto standard for multiprocessor programming.
Most C-based toolchains, including the Texas Instruments toolchain for multi-
C66x core DSPs, support OpenMP. OpenMP is a set of pragmas for parallelizing
loops or sections of an imperative (e.g. C) code. Current OpenMP implementa-
tions are oriented towards the dynamic creation of tasks by a runtime support
based on pragma information. In this context, no rapid prototyping is available
to check the system conformance to performance constraints.

The creation of the PREESM rapid prototyping framework has been inspired
by the Algorithm-Architecture Matching methodology (AAM, also sometimes
called AAA) [§]. AAM consists in simultaneously searching the best software
and hardware configurations for respecting the system constraints. The SynDEx
tool [7] is also based on the AAM methodology but it differs from PREESM
on several ways: SynDEx is not open source, has a unique dataflow Model of
Computation that does not support schedulability analysis and the function
of code generation is possible but not provided with the tool. Schedulability
analysis is an important feature of PREESM because it ensures deadlock freeness
in the generated code.

The Open RVC-CAL Compiler (Orcc) [16] is an open-source tool that gener-
ates different types of hardware and software code from a unique dataflow-based
language named RVC-CAL. The recent TURNUS tool [2] is an exploration tool
that complements the Orcc compiler by offering RVC-CAL design space ex-
ploration. An important difference between Orcc, TURNUS and PREESM is
the MoC of the algorithm description. While PREESM uses the decidable [I]
PiSDF MoC, the MoC implemented in RVC-CAL is not decidable and thus,
in the general case, no guarantee can be given in Orcc and TURNUS on the
deadlock-freeness and memory boundedness of the generated code.

SDF3 [12] is an open-source dataflow analysis tool that supports the Syn-
chronous Dataflow (SDF), Cyclo-Static Dataflow (CSDF) and Scenario-Aware
Dataflow (SADF) MoCS. SDF3 is oriented towards model analysis and simu-
lation while PREESM aims at both simulating the system and generating an
executable prototype.

The features that differentiate PREESM from the related works and similar
tools are:

e the tool is open source and accessible onlineﬂ

e the algorithm description is based on a single well-known and predictable
model of computation;

e the scheduling is totally automatic;

e the functional code for heterogeneous multi-core embedded systems is gen-
erated automatically;

e rapid prototyping metrics are generated to help the system designer to
take decisions;

e the PiSDF algorithm model provides a helpful hierarchical encapsulation
and parameterization, thus simplifying the scheduling;

Thttp://preesm.sourceforge.net/website,/



o the System-Level Architecture Model (S-LAM) architecture model pro-
vides a high-level architecture description to study system bottlenecks.

Next Sections cover these features through a presentation of the rapid pro-
totyping tool chain of PREESM.

3 Rapid Prototyping Overview

Figure [1| shows a PREESM typical rapid prototyping process described in the
PREESM tool by a graphical workflow. A PREESM workflow is a graph con-
necting rapid prototyping tasks such as scheduling and simulation. Each task
is implemented in a different Eclipse plug-in, providing a high scalability to the
tool. Workflow support is a feature that makes PREESM scalable and adapt-
able to designer’s needs. A developer tutoriaﬂ provides all necessary information
to create new workflow tasks and adapt PREESM to a designer’s needs (e.g.
for exporting a graph in a custom syntax or for experimenting new scheduling
methods).

An algorithm graph description (in PiSDF), an architecture graph descrip-
tion (in S-LAM), and a scenario are retrieved from XML files (left hand side
of Figure [1). Graphic editors are provided within PREESM for all the rapid
prototyping inputs. These editors ease manipulation and edition of algorithms
and architectures and thus the exploration of the design space.

A scenario is a database providing all information to link an algorithm and
an architecture. It enables a clear separation of concerns between algorithm
and architecture design. For instance, the scenario contains the deterministic
execution time of each actor on each type of cores.

Algorithm and architecture models undergo several transformations (includ-
ing a graph flattening, equivalent to loop unwinding in a compilation process)
to expose parallelism to the scheduling process. They are then passed to a static
scheduling and a memory optimization tasks. The static scheduling transforma-
tion generates a periodic multicore schedule that will be repeated indefinitely to
process the input data stream. At the end of each iteration of the periodic multi-
core schedule, the FIFO queues are back in their initial state, ensuring deadlock
freeness. The memory optimization task computes a memory exclusion graph
in order to authorize memory reuse between FIFOs in the intermediate repre-
sentation used for code generation.

Finally, the simulation and the code generation tasks provide respectively
metrics for system design and a prototype for testing the multicore execution of
the system. Next Section presents in more details the algorithm and architecture
models used in PREESM.

4 Rapid Prototyping Input Models

4.1 The Parameterized and Interfaced Synchronous Dataflow
(PiSDF) Model of Computation

The PiSDF dataflow model [5] used to describe algorithms aims at providing
coarse grain parallel descriptions of algorithms specifying precisely the data

2http://preesm.sourceforge.net /website/new-workflow-task
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Figure 1: PREESM Rapid Prototyping Process: An Example of a Workflow
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Figure 2: An Example of a PiSDF Model

flowing between actors and offering a tradeoff between dynamic behavior and
predictability.

An example of a PiSDF model is shown in Figure 2] This example corre-
sponds to a filter that takes a fixed size number of data tokens (indivisible unit
of data) as inputs and internally distributes these tokens to N kernels that ef-
fectively execute the filtering. This example can for instance be used to execute
the filtering of an image by slice (without overlapping between slices) so as to
provide data parallelism.

The internal behavior of actors is programmed in plain C code. Actors are
authorized to access their input and output data tokens in any order. This
construction automates the computation of the number of executions (or fir-
ings) of the actors per invocation of the graph. This computation is based on
the production and consumption of data and can ensure deadlock-freeness at
compile-time.

Actors are stateless and the only possibility for an actor to keep a state in-
formation between two executions is to send information to its future iterations.
The feedback loop of the actor Filter with a delay of size tokens provides the
Kernel actor with the corresponding slice of the preceding processed image.

Production and consumption rates of PiSDF actors, as delays of FIFOs
between actors, can be parameterized depending on the need of the application.
In our example, size and N are two parameters enabling to vary the number
of tokens filtered and the number of kernels executing the filtering. The value
of these parameters can be modified at run-time, in which case we talk about
dynamic parameters.
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Figure 3: An Example of a S-LAM Model

4.2 The System-Level Architecture Model (S-LAM)

With the convergence of hardware and software languages, the reconfigurable
architectures and the High-Level Synthesis (HLS), the distinction between hard-
ware and software is becoming unclear. S-LAM describes architectures in a
graph as a set of cooperative processing elements offering processing capabilities
to dataflow actors and a set of communication features offering communication
services to dataflow FIFOs [10]. This definition authorizes the use of S-LAM for
describing parallel architectures at different levels of granularity: a set of PCs
communicating through ethernet, a set of cores communicating through shared
memory, etc.

An example of an S-LAM model is shown in Figure It describes a
TMS320C6678 architecture by describing the 8 C66x cores and the capac-
ity of each core to communicate with any other core through two parallel
communication nodes: an internal shared memory (Multicore Shared Mem-
ory Controller (MSMC)) and an external shared memory (Double Data Rate
SDRAM (DDR3)). The graph does not represent the architecture itself but the
services it provides to the dataflow algorithm. The same hardware architecture
can thus be represented in several ways depending on the modeled communica-
tion capacities.

The black dots represent Time Division Multiple Access (TDMA) for the
data transfers on the communication nodes and for the actor executions on the
processing elements. The absence of a black dot on the MSMC node means that
simulation will consider it as capable of managing any number of communication
simultaneously. The motivation for this representation is that MSMC controller
has an independent link for each core at 16 GB/s while the external DDR3
has a unique link to the processor at 10.6 GB/s. More advanced features are
representable in S-LAM such as the delegation of communications to a Direct
Memory Access (DMA). Next section describes the main PREESM workflow
tasks which process PiSDF algorithm models and S-LAM architecture models.

5 Rapid Prototyping Tasks

Rapid prototyping consists in exploring the design space of a target system in
order to minimize its cost and guarantee the respect of different constraints,
the most common ones being: latency, throughput, memory, and energy con-
sumption. Other constraints may exist, such as jitter or signal simultaneity.
The diversity of constraints invalidates a unique approach targeting all types
of signal processing systems. However, it fosters frameworks such as PREESM
with plugged-in functionalities that adapt to different targets.



The PREESM multicore scheduler implements the List and Fast scheduling
methods described by Kwok [9]. The current PREESM plug-ins are focusing
on latency dominated systems. A latency dominated system is a system where
the respect of the latency constraints of the processing assures the respect of
its throughput constraints [6]. In this case, the main processing iteration does
not need to be pipelined (i.e. only one iteration of the processing is alive at
any moment) but it may need to be parallelized if the work to execute is longer
in time than the latency constraint. In the current PREESM code generation,
all cores are synchronized with a barrier between two application iterations.
It is important to note that while inter-iteration pipelining is not supported,
intra-iteration pipelining of actors is already available. This constraint may be
relaxed in the future, at the cost of a more complex memory and time analysis.

Bounded memory execution is an important property of decidable MoCS [I].
Without this property, unexpected deadlocks can appear when a FIFO becomes
out of memory. PREESM currently generates guaranteed deadlock-free code for
PiSDF algorithms with purely static parameters. An extension to more dynamic
parameters is foreseen in the short term. An advanced memory optimization
mechanism based on a memory exclusion graph [4] is available in PREESM
to avoid preserving fifo memory spaces that are useless for the correct system
execution.

The PREESM simulation offers to the system designer a simulated Gantt
chart of the code execution on the parallel architecture, a speedup assessment
chart that draws the expected algorithm execution speedup depending on the
number of cores, and an evaluation of the memory necessary for the execution.
The code generation produces a self-timed code [I1], i.e. a static code for each
core with automatic inter-core communication, cache management and synchro-
nization. This code necessitates communication libraries, which are provided for
the TMS320C6678 processor.

A more complete description of PREESM rapid prototyping tasks can be
found in [I0]. Next Section will provide some experimental results using the
tasks described above.

6 Experimental Results

Through the example of a state-of-the-art computer vision application, this Sec-
tion presents how PREESM can be used to develop an application and automat-
ically deploy a prototype implementation on a multicore Keystone architecture.

6.1 Use Case: Stereo Matching Algorithm

The application studied is a stereo matching algorithm. The purpose of stereo
matching algorithm is to process a pair of images taken by two cameras in order
to produce a disparity map that corresponds to the 3"¢ dimension (the depth)
of the captured scene. The large computation and memory requirements of
stereo matching algorithms, as well as their promising use in Advanced Driver
Assistance Systems (ADAS) [13], make them interesting case studies to illustrate
the efficiency of the PREESM rapid prototyping framework.

Figure [d] presents the top-level PiSDF graph of a stereo-matching algorithm.
Two parameters are used to configure this PiSDF graph: size, which corre-
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Figure 4: PiSDF graph of the stereo matching application

sponds to the number of pixels of each image of the input stereo pair processed
by the algorithm; and nbDisparity, which represents the number of distinct
values that can be found in the output disparity map.

The stereo matching PiSDF graph presented in Figure [] contains 7 actors:

e Read produces the 2 input frames by reading a stream or a file.

e PreProcess converts an RGB image into its grayscale equivalent. This
actor also produces an 8-bit signature, called census, for each pixel of an
input image. This signature results from the comparison of each pixel
with its 8 neighbors.

e Duplicate produces a configurable number of copies of the data received
on its input ports.

e CostComputation computes the matching cost of each pixel for a given
disparity. This actor is called as many times as the number of tested
disparities.

e DisparitySelect produces a disparity map by selecting the disparity of
the input cost map with the lowest matching cost for each pixel.

e MedianFilter applies a 3x3 pixels median filter to the input disparity
map to smooth the results.

e Display displays the result of the algorithm or writes it in a file.

Below each actor is a repetition factor which indicates the number of exe-
cutions of this actor for each iteration of the graph. This number of executions
is computed from the data production and consumption rates of actors. The
PiSDF description of the algorithm provides a high degree of data and task
parallelism since it is possible to execute in parallel the repetitions of the most
computationally intensive actors, namely PreProcess and CostComputation. In
addition to the parallelism expressed in this top-level graphs, several actors can
be refined with hierarchical subgraphs also containing parallelism. For example,
the PreProcess and Median actors can both be implemented in such a way that
several parts of their input images are processed simultaneously in parallel.

6.2 Preesm results

The results presented in this section are obtained by applying the PiSDF graph
of Figure [4] to stereo pairs of size = 450 x 375 pixels, with nbDisparity = 60. In
this configuration, 300 actor firings must be scheduled for each iteration of the
complete PiSDF graph, and 987 FIFOs must be allocated in shared memory.
The time taken by the Preesm framework to automatically deploy the stereo
matching application on the eight cores of a TMS320C6678 chip is 45 seconds.
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Figure 5: Throughput of the stereo matching application depending on the
number of targeted C6x cores.

The scheduling process is responsible for 53% of this time, memory optimization
for 36%, graph transformations for 9%, and code generation for 2%. The ex-
ecution time of the rapid prototyping process remains relatively low compared
to the 140 seconds needed to compile the application for the multicore DSP.
The fast execution of the Preesm framework is a key feature to accelerate the
testing of different deployment scenarios and ease the design space exploration
on different multicore architectures.

Figure [5| shows the performance obtained by deploying the stereo matching
algorithm on a variable number of cores of the TMS320C6678 multicore DSP
chip. On eight cores, a throughput of 0.33 frames per second (fps) is reached.
This throughput corresponds to a speed-up by a factor 3.3 compared to the
execution of the application on one DSP core.

Figure [5| also plots the theoretical greedy scheduling throughputs [10] com-
puted by Preesm for the stereo matching application. In the current version,
the computation of this theoretical throughput does not take into account inter-
core communications nor cache operations. It could be considered as an upper
bound for the achievable throughput. Consequently, the actual throughput of
the stereo matching algorithm appears to be inferior to the theoretical through-
put.

Figure [6] shows the data memory footprint allocated for the execution of the
stereo matching algorithm on a variable number of cores of the TMS320C6678
multicore DSP chip. The smallest memory footprint of 68.4 MBytes is obtained
when the application is executed on a single core of the architecture. When the
number of cores executing the application is increased, more parallelism of the
application is preserved, and the allocated memory footprint is increased. As
illustrated in Figure [6] the memory optimization techniques used in Preesm [4]
limit this increase of the memory footprint allocated for the application, and
only 79.7 MBytes of memory are needed to execute the application on 3 to 8
cores. Without the memory optimization techniques of Preesm, more than 1.4
GBytes would be needed to execute the application, which is far more than the
512 MBytes available on the EVMC6678.

These experimental results show that the Preesm framework can be used to
deploy and optimize real applications on multicore architectures within minutes.
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Figure 6: Memory footprint of the stereo matching application depending on
the number of targeted C6x cores.

Several tutoriald] are available online to demonstrate the framework function-
alities.

7 Conclusion

PREESM provides a complete rapid prototyping framework for multicore DSP
system design. As a C-based open-source framework distributed with complete
tutorials, it aims at initiating C programmers and system designers to dataflow
methods. Furthermore, the PREESM framework has demonstrated capabilities
for developing an optimized real world application (e.g. the stereo matching
algorithm) for multicore DSP architectures.

3http://preesm.sourceforge.net/website/tutorials
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